Near - optimal visual search : behavior and neural basis

نویسندگان

  • Wei Ji Ma
  • Vidhya Navalpakkam
  • Jeffrey Beck
  • Ronald van den Berg
  • Alexandre Pouget
چکیده

1 Theory .......................................................................................................................... 1 1.1 Global log likelihood ratio ................................................................................... 1 1.2 Local log likelihood ratio (neural form) ............................................................... 3 1.3 Local log likelihood ratio (behavioral form) ........................................................ 5 1.4 Relation of optimal model to max and sum models ............................................. 7 1.5 Non-optimal local decision variables ................................................................... 8 2 Behavioral experiments ............................................................................................... 8 2.1 Experiments 1a and 2a ......................................................................................... 8 2.2 Individual-subject ROCs ...................................................................................... 9 2.3 Bayesian model comparison ................................................................................. 9 3 Neural implementation .............................................................................................. 10 3.1 Intuition behind a nonlinearity ........................................................................... 10 3.2 Network performance ......................................................................................... 10 3.3 Effect of non-Poisson-like statistics ................................................................... 11 Supplementary Figures are at the end.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Constrained Nonlinear Optimal Control via a Hybrid BA-SD

The non-convex behavior presented by nonlinear systems limits the application of classical optimization techniques to solve optimal control problems for these kinds of systems. This paper proposes a hybrid algorithm, namely BA-SD, by combining Bee algorithm (BA) with steepest descent (SD) method for numerically solving nonlinear optimal control (NOC) problems. The proposed algorithm includes th...

متن کامل

Identification of the underlying factors affecting information seeking behavior of users interacting with the visual search option in EBSCO: a grounded theory study

Background and Aim: Information seeking is interactive behavior of searcher with information systems and this active interaction occurs in a real environment known as background or context. This study investigated the factors influencing the formation of layers of context and their impact on the interaction of the user with search option dialoge in EBSCO database. Method: Data from 28 semi-stru...

متن کامل

Neuro-Optimizer: A New Artificial Intelligent Optimization Tool and Its Application for Robot Optimal Controller Design

The main objective of this paper is to introduce a new intelligent optimization technique that uses a predictioncorrectionstrategy supported by a recurrent neural network for finding a near optimal solution of a givenobjective function. Recently there have been attempts for using artificial neural networks (ANNs) in optimizationproblems and some types of ANNs such as Hopfield network and Boltzm...

متن کامل

Neural basis of feature-based contextual effects on visual search behavior

Searching for a visual object is known to be adaptable to context, and it is thought to result from the selection of neural representations distributed on a visual salience map, wherein stimulus-driven and goal-directed signals are combined. Here we investigated the neural basis of this adaptability by recording superior colliculus (SC) neurons while three female rhesus monkeys (Macaca mulatta)...

متن کامل

Application of an Improved Neural Network Using Cuckoo Search Algorithm in Short-Term Electricity Price Forecasting under Competitive Power Markets

Accurate and effective electricity price forecasting is critical to market participants in order to make an appropriate risk management in competitive electricity markets. Market participants rely on price forecasts to decide on their bidding strategies, allocate assets and plan facility investments. However, due to its time variant behavior and non-linear and non-stationary nature, electricity...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011